
Dissemination and Presentation of High Resolution
Air Pollution Data from Mobile Sensor Nodes

Will Hedgecock, Peter Volgyesi, Akos Ledeczi, and Xenofon Koutsoukos
Institute for Software Integrated Systems - Vanderbilt University

Nashville, TN, USA 37203
{will.hedgecock; peter.volgyesi; akos.ledeczi; xenofon.koutsoukos}@vanderbilt.edu

ABSTRACT
This paper presents the framework of a mobile air qual-
ity monitoring network, with an in-depth discussion of sev-
eral new innovative techniques for web-based visualization.
These techniques allow typical web users to access high-
resolution pollution data gathered from a large number of
vehicle-mounted mobile sensing devices coupled with highly-
accurate static sensor data in an easy-to-use, intuitive inter-
face. Additionally, this interface offers users a set of novel
applications to promote health and pollution awareness, in-
cluding a green trip planner, whereby users can plot routes
between two locations based on a path of least exposure to
specified pollutants, and an exposure estimator, which al-
lows users to calculate previous levels of exposure to harmful
pollutants based only on a single timed GPS track.

Categories and Subject Descriptors
H.5 [Information Systems]: Information Interfaces and
Presentation

General Terms
Web Based Visualization, Mobile Data Networks

Keywords
Data visualization, pollution monitoring, wireless sensor net-
works

1. INTRODUCTION
In 2007, a collaborative research project was commissioned

by Microsoft to design a system capable of providing real-
time air quality information to the general public via its
SensorMap online visualization interface. Work was begun
on such a system with the initial steps toward its imple-
mentation being completed by late 2007 [14]. The reason
behind the need for such a system comes from a serious lack
of real-time pollution indicators in both the United States
and worldwide.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SE 2010 Oxford, Mississippi USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

The current method of air pollution monitoring in the
United States includes sampling airborne pollutants hourly,
averaging these pollutant concentrations together over a 24-
hour period, and publishing this data as a single value known
as the day’s Air Quality Index (AQI) [5]. For people who
desire a higher level of resolution, the Environmental Pro-
tection Agency (EPA), along with several other government
agencies, runs a service called AIRNow which publishes the
available hourly pollution data on a web site in both graph-
ical and downloadable form. It should be noted, however,
that there are only about 5,000 pollution monitoring sta-
tions throughout the country. This minimal number of sen-
sors coupled with a sparse sensing schedule means that the
AIRNow interface only provides an extremely low-resolution
image of air quality. Since pollution is highly location de-
pendent, there is insufficient data to accurately evaluate air
quality within specific neighborhoods or at precise locations.

Implementing a mobile air quality monitoring network en-
ables a detailed picture of air pollution to be constructed
based on real-time data from mobile sensors over an entire
populated area. The work carried out under the Microsoft
Research Grant enabled us to demonstrate the feasibility
of this approach and build five car-mounted pollution sen-
sor prototypes, each with an onboard GPS receiver and gas
sensors measuring O3, NO2, and CO [14]. The recorded
data, however, is only as useful as the manner in which it is
presented. This paper discusses a novel method for access-
ing large-scale pollution data using web-based visualization
techniques and a set of innovative web-based applications to
provide additional health-related services to the public.

2. SYSTEM ARCHITECTURE

2.1 Sensor Node Overview
In order to discuss current research, we must first intro-

duce the building blocks of the mobile monitoring network,
namely the vehicle-mounted sensing nodes, as shown in Fig-
ure 1 on the next page. Each of these nodes is able to collect
pollution data corresponding to atmospheric O3, NO2, and
CO levels in an autonomous fashion, as well as store this
data offline or stream the data to a base station in real time.
Location and time information is provided by an on-board
20-channel SiRF-III-based GPS module at a sampling rate
of 1 Hz. Gas concentration levels are measured by three
analog sensors whose readings, along with the temperature,
relative humidity, a time stamp, and GPS data, are stored
in a serial flash device, capable of holding 6 hours and 50
minutes of data without offloading the information.

Figure 1: Sensor Node Prototype

The entire node runs at a software-defined frequency of
0.833 Hz, equivalent to 1 clock cycle every 1.2 seconds. At
every cycle, the node reads the ambient temperature and
relative humidity, polls the gas sensors, stores this informa-
tion into flash memory, and offloads the data if possible.
Each sample includes a maximum of 82 bytes of GPS data,
all of the status information regarding the unit, as well as
the actual atmospheric and pollution conditions, totaling 98
bytes of data. Thus, the total amount of pollution data to
be stored, processed, retrieved, and visualized is equal to
4900 ∗NumActiveNodes bytes per minute.

2.2 System Overview
Although the sensor nodes are the physical building blocks

of the mobile air quality monitoring network, many other
components contribute data necessary to implement this ar-
chitecture on a global system scale. The most notable of
these components are the servers which are responsible for
the processing, filtering, storage, and reconstruction of the
information, as well as the clients who are interested in ac-
cessing the data. In addition to these components, the sys-
tem uses external sources of information to add to its accu-
racy and robustness, such as area maps, local weather and
traffic information, and measurements from the 5,000 EPA
sensors [5]. The data from all of these components are used
to reconstruct an overall pollution function for a given lo-
cation over a given time window. This massive amount of
data is then used by our servers to provide web clients with
data, which is then displayed in an easy-to-use and intuitive
interface, as described in the following sections.

It is important to note that the servers in this system
constitute a server cloud, whereby server processes run on
an interconnected distributed serving system. This increases
the system’s robustness and fault-tolerance while decreasing
the bottleneck between potentially thousands to millions of
clients accessing system resources through only one server or
server bank. The server system is distributed in the sense
that each server array is connected, directly or indirectly,
to every other server array, such that data can be passed
between servers in a manner similar to Internet routing [13].

The server system processes incoming measurements as
atomic tasks through a series of phases. The inputs and
outputs of each stage are stored so that failed steps can be
rolled back. Only data tasks that successfully complete all
phases are stored in each server’s database. This approach
avoids the cumbersome and resource-intensive process of re-
moving faulty data. More abstract processing stages, such
as context binding and interpolation, happen only after all
relevant data are available. Waiting for complete data sets
before processing reduces the cost of sophisticated stages
and improves the overall quality of the generated data.

All processing stages are implemented as user-defined func-
tions and stored procedures, developed in the C program-
ming language. The overall data management system uses
Microsoft SQL Server 2008, including its OpenGIS imple-
mentation. SQL Server is a good choice of data management
software because it is a production-level Database Manage-
ment System that offers high performance through cluster-
ing (the distribution of database information over several
servers for redundancy and increased efficiency) [6]. Like-
wise, OpenGIS is an important database component, as it al-
lows other developers and programmers to access the stored
information in a widely-available, open-source format [9].

Finally, the clustering of data between servers occurs nat-
urally based on geographic location. Several servers located
throughout the country should primarily service the nodes
and clients in their own sphere of influence. For example,
all sensing units in Chicago transmit (using GSM modems)
to the closest server bank to Chicago. This is possible since
each device’s on-board GPS unit is able to pinpoint its posi-
tion and choose the correct server address from an internal
database. Likewise, web clients accessing the project web
site from Chicago are routed to the closest server bank.
Finding a user’s location based on IP address is a well-
defined process with many implementations already avail-
able, such as MaxMind’s GeoLite City [10]. Thus, the traf-
fic to and from each server will be balanced according to
geographic location, lowering access and processing laten-
cies. If, however, a user in Chicago wants to view sensing
data from another region (New York, for example), the lo-
cal server acts as a cluster of the distributed whole; thus, it
can fetch the required information from the New York server
bank (over the Internet or dedicated lines) and store it in a
local cache in case it is needed again or until it expires.

2.3 Communication & Information Interfaces
The transfer of data between server and clients uses an

open-source platform called APE, short for ”AJAX Push En-
gine.” The engine makes use of an epoll-driven HTTP server
written in C to allow data exchange between over 100,000
users per server via a web browser, without reloading or re-
lying on any external plug-ins other than Javascript, which
comes standard in almost all graphical web browsers [1]. The
advantage of using APE in this system is that it uses push
technology instead of pull to deliver updates to subscribed
clients as they appear on the server in real-time. This not
only reduces the massive amount of network traffic required
to simply request information every few seconds, but also
ensures that data is only transmitted when necessary.

The client side of APE uses a Javascript framework to
hook into its communications capabilities. It allows for new
plug-in modules to be added to extend server capability
should any unforeseen needs arise. In the context of the
pollution monitoring network, a single persistent connection
is made over APE to the geographically-closest server when
a user logs onto the project web site. The user is then pre-
sented with a Google map to display sensing nodes and pol-
lution data. The GPS coordinate bounds of the map’s view-
port are communicated to the APE server, where they are
used to subscribe the user to any nodes or pollution infor-
mation falling within those bounds. Once this connection is
established, data only flows between server and client when
a node’s data has been updated or when the user changes
the viewport and must subscribe to a new set of locations.

Since the APE framework uses a subscription method for
client communications, a single node update could result in
the update being propagated from a single server to numer-
ous clients, similar to a data broadcast. Also, since SQL
Server is being used as the database system to drive APE,
users may request (query) subsets of all the available infor-
mation. In this way, a user viewing a simple sensor map
is able to subscribe exclusively to sensor node location in-
formation without any accompanying pollution data. This
greatly decreases the amount of traffic being sent over the
network. If the user wants to access the raw data coming
from a sensor on the map, then our visualization tools al-
low them to select that sensor, thereby subscribing to its
total data package. In this way, the only data that traverses
the network is the data the user has an interest in view-
ing, making the client-server communications as efficient and
resource-friendly as possible.

3. WEB-BASED VISUALIZATION
The most visible and integral part of the monitoring net-

work for everyday users is the web interface used to access
the vast quantity of data provided by the system in an intu-
itive and easy-to-use fashion. The main purpose of the web
interface is to provide access to the reconstructed pollution
signal. At the most basic level, the system is able to calcu-
late a vector of contour points or a two dimensional array
of data points for pollutants in an area at a specified reso-
lution and time interval, calculate a vector of time instants
when pollutants cross specified thresholds at some location,
or return the time series of pollutants at a specified time
resolution and location. On top of this basic set of queries,
several web applications provide useful services to the end
user, most notably web-based visualization.

3.1 GPS Smoothing
While GPS systems are extremely accurate when used

in situations where the GPS receiver is moving at a high
velocity, accuracy decreases substantially at slower receiver
speeds, due to a lack of velocity information to aid in mod-
eling and estimating the receiver position [3]. We have wit-
nessed location measurements of 150 meters error when the
receiver is stationary. Due to these inherent shortcomings,
especially when stationary, coordinate readings are gener-
ated with highly varying degrees of accuracy. Since precise
estimation of sensor location is essential in this system, it is
important that these inconsistencies be handled gracefully
to obtain the most accurate location estimation possible.

We have developed a new method of filtering and smooth-
ing recorded GPS coordinates, especially in stationary and
low-speed situations, based on a modified Cumulative Dis-
placement Filter [4]. This filter relies on the assumption that
the relative displacement between sets of coordinates are
more accurate than the coordinates themselves in low-speed
situations. Our modifications take advantage of the knowl-
edge that GPS accuracy increases with speed, and abrupt
changes in location, azimuth, and speed are unlikely.

In our implementation, a variable-length history of GPS
data is stored, such that the actual (albeit slightly time-
delayed) position can be extrapolated from current, previ-
ous, and future measurements when the speed of the device
decreases past some threshold or upon detection of outliers.
Essentially, the filter works by projecting positions onto a
linear regression built from the normalized sum of displace-

Figure 2: GPS Smoothing Results

ments from each position in the history to the next. It should
be noted that this filter cannot be used in real time, but in-
stead requires a delay equal to the size of the filter history.
This is acceptable since data processing is done offline on
a server, and the history only requires three data points
to achieve maximum smoothing results. In addition to esti-
mating positions at low speeds or with noisy signals, we have
added functionality to disallow changes in location when the
device is likely stopped, judging by the fusion of inputs from
an on-board MEMS accelerometer, the speed estimation of
the node, and sporadic readings from the GPS unit. This
greatly cleans up the signal at events such as traffic lights,
stop signs, or weak signals when the unit reports extremely
inaccurate positions. Figure 2 shows the result (blue) of
applying this filter to a noisy GPS signal (green).

Initially, a simple low-pass filter was tested to generate
the aforementioned results. It was found, however, that a
low-pass filter does not take into account typical GPS re-
ceiver behaviors, such as the possibility of losing satellite
locks, having highly erroneous measurements followed in-
stantaneously by accurate measurements, or even stopping
and going in the reverse direction. As such, the smoothed
results did not accurately reflect the ground truth, and of-
tentimes led to tracks that went off of roads and sometimes
even into buildings. Our implementation has been found to
give extremely accurate results with respect to a measured
ground truth. In fact, the results as shown in Figure 2 so
closely match the actual ground truth for that track that a
graphical representation primarily shows only a single track.

3.2 Flash-Based Web Client
Access to the pollution information in our databases oc-

curs mainly via an innovative new flash-based web client,
which enables users to not only access raw sensor data, but
also visualize relative pollution functions in a manner similar
to Weather Channel radar maps [15], interact with the map
in an intuitive fashion to retrieve desired data, use the data
for several practical health-related applications, and gather
targeted information about specific nodes or geographic ar-
eas over a variable time history. Our implementation of this
client takes great pains to take into account the specific na-
ture of the system to provide the most efficient, reliable, and
robust interface possible. This section describes the various
aspects of the web client, including its capabilities as well as
the means by which it carries out its numerous tasks.

Figure 3: Flash-Based Web Client

The main and most important aspect of the web-based
client is the Google Map used to display sensor and pollutant
information. Figure 3 shows the client as it appears when
you first log onto the project web site. All of the information
that can be displayed by the client is highly customizable,
down to the type and resolution of map used for displaying
the sensors and pollution information.

3.2.1 Marker Clustering
Once this system is deployed, it is likely that there will

be many sensors located in close proximity to one another.
Showing so many sensor icons at once will cause delays in the
visualization system and look cluttered, making it difficult
to see what is happening, let alone to select individual sen-
sors. Likewise, when a user zooms out, the scale of the map
increases and the sensors move closer and closer together. To
remedy this problem, we use a marker clustering approach,
embodied in a ”Marker Clusterer” component that analyzes
the positions of all sensors in the viewport, and if any mark-
ers are within 20 pixels of any number of other markers, they
are combined into one ”cluster marker” with the number of
sensors contained in the cluster being displayed. To see the
nodes contained in the cluster, the user can either move the
cursor over the node where a text box will show the cluster
contents, or zoom in such that the markers are sufficiently
far apart to be displayed individually.

All sensor markers are completely managed by the Marker
Clusterer in this system, including the markers for single
sensors. If the clustering algorithm deems the marker to
be sufficiently far away from other markers, it takes care
of adding the individual icon to the map. In addition to
adding to the user-friendliness and visual aesthetics of the
client, the marker clustering implementation also provides
a better, more efficient way to manage the potentially vast
number of markers present on the entire map. Instead of
simply adding a sensor marker everywhere a physical sensor
is located, the Marker Clusterer keeps track of all of the
markers available to be drawn, but only adds the ones to
the map that would currently be visible given the geographic
bounds of the viewing region. This keeps the Google Maps
system from being bogged down by too much data, and also
allows for 1000s of markers within the viewing area to be
displayed with little to no noticeable delay to the user.

Users can select sensors by clicking the individual markers,
the cluster markers, or in a special ”Marker Select Mode”
by selecting all markers in a region indicated by a cursor-
drawn box. Selecting a cluster marker effectively selects all
the individual nodes within the cluster. When one or more
nodes are selected, a blue box appears at the bottom left
corner of the map indicating the number of selected sensors.

3.2.2 Sensor Data
Data from the viewport and the selected sensors is visible

in the sidebar on the right side of the client. This is the most
important part of the client for viewing and manipulating
data and statistics. Each sub-panel in the sidebar is col-
lapsible and expandable such that the user must only view
interesting or relevant data. The top-most panel is used to
download raw data from the selected sensors. All that is re-
quired to use this function is a selection of some number of
sensors, the sensing modalities for which the user would like
data, and the starting and ending times and dates of data
to retrieve. A database request query is sent to a server
over the persistent APE connection, asking for data from
the selected nodes (using their node IDs) with additional fil-
ter parameters being the start and end dates specified. The
data is returned in the form of a SQL query response and
downloaded to separate XML files for each selected node.

The next sub-panel is dependent upon the current viewing
area, not the selected sensors. It displays statistical time se-
ries data over the past two hours for the entire viewing area.
The user selects which statistic and modalities they are in-
terested in, and a SQL query is sent over the APE connec-
tion, requesting sensor information for the past two hours,
filtered by the geographic bounds of the current viewport.
The requested statistic is calculated from the returned data,
and the graph displays the information, updating itself auto-
matically whenever the viewport changes. So that the data
is kept fresh, but network traffic is minimized, the graph
caches its current data and updates it every 30 minutes.

The third sub-panel shows the current statistical infor-
mation for all sensing modalities for the range of selected
sensors. This includes the mean, median, variance, and
standard deviation for each pollutant. This is an extremely
informational yet resource-economical function as it only re-
quires the most recent sensor data from each selected node.

Finally, the last sub-panel shows the current raw data
being reported by each selected sensor. When a user selects
a sensor, it is added to this list, and the raw O3, NO2, and
CO levels are displayed in the table. Likewise, when a user
deselects a sensor, it is removed from this list. It should
be noted that all of these sidebar sub-panels are updated
dynamically in realtime as new data arrives. Thus, the user
can be assured that any of the data or statistics being shown
represent the most current data available to the system.

3.2.3 Sensor Node Visibility and History
The actual map area is able to show a variety of overlays

depending on the interests of the user. By default, all sensor
node locations are displayed upon loading of the web client;
however, other overlays require manual instantiation. All
available overlays may be toggled on or off via their respec-
tive buttons on the top bar of the client. Currently, two
other overlays are available: a contour pollution overlay and
a node path history overlay. The contour pollution overlay
is a visualization of the pollution function within the view-

port, which when fully implemented, will look similar to a
Weather Channel radar map [15]. When viewing this type
of overlay, only one modality can be shown at a time, due
to the colorful, contour nature of the overlay which makes
it impossible to differentiate between multiple modalities.
These pollution maps will be generated locally by each indi-
vidual web client using sparse data from the servers to feed
a pollution model reconstruction function.

The node path history overlay provides a way to visualize
where a sensor has traveled over the past two hours. It can
show history information for all sensors in the viewport or
only for selected sensors. In either case, the precise locations
of the chosen sensors will be shown for the past two hours
as different color line traces on the map. This history data
is loaded via a simple SQL query to the web server, and the
resulting coordinates are fed into a ”Polyline” interface in
the Google Maps API to produce the desired tracks.

3.2.4 Realtime Raw Data Graph
The very bottom area of the web client displays a graph

which is used to show the raw data for selected sensors in
graphical form. The user selects a desired sensing modality,
and the past two hours of history for each of the selected
sensors will appear on the graph. As time progresses and
newer information becomes available, the graph continually
updates itself, scrolling to the left such that there are always
two hours of data showing with the right-most data point
being the most current for each of the selected sensors.

It is clear that each of the components in the web client
reuses information from other areas, manipulating the data
as necessary for the specified functionality. A great strength
of the client is its ability to send large requests for data once,
then visualize the data in numerous ways from graphical
to historical to statistical, while still remaining responsive
and efficient. This is a primary goal of such a visualization
framework, to present the available data in a variety of useful
formats without overwhelming the user, the system, or the
resources required for such data-intensive processing.

3.2.5 Data Retrieval
The greatest power and flexibility of this web client comes

from the fact that all of the above functions can be used
not only for current, realtime data, but also for the most
recent 7-day span of history or any user-defined span of times
and dates in the past. History functionality works similarly
to a video player. When the user selects any mode other
than ”Current Time,” a set of player controls appears at the
bottom of the map. These controls work like any standard
video player controls. The labels at the bottom left and right
of the timeline show the start and end times and dates, and
the label above the tracking bead shows the current time
and date being displayed by the web client. Pressing the
play button causes the tracking bead to move to the right,
playing the history in real time. If the user wants to see
the history played in an accelerated fashion, they can press
the ”faster” button to increase playback speed an unlimited
number of times. Conversely, if they want to slow the play
speed back to normal, they can press the ”slower” button
until the play speed has returned to realtime. It should
be noted that playback cannot occur at speeds slower than
realtime. If the user wants to directly skip ahead to a time,
they can drag the bead forward or backward to reach the
desired time and playback will resume from there. Finally,

to stop playback, the ”stop” button can be pressed. Pressing
play after stopping playback continues to play the history
from the time when the stop button was pressed.

The player works by making the web client think that the
current time is something other than it is. In other words,
the entire web-client system thinks it is actually operating
at some user-defined date and time, and carries out normal
functionality under that assumption. As such, playback is
just as efficient as realtime streaming of data since it does
not rely on changes to the underlying code. The only thing
different from realtime streaming is that the sensor locations
for all visible nodes over the entire history are loaded such
that the user can skip to different times on the timeline
without having to wait for data to buffer. Actual pollution
concentration data is streamed in realtime as usual because
the latency required for this is minimal, and it can be done
without creating lags or delays in system playback.

Whenever the viewing area is changed by the user, the
history data reloads based on the new bounds and playback
continues; thus, the amount of memory resources required is
minimized by only storing the data currently visible in the
viewport (exactly the same way that the Marker Clusterer
only displays markers currently in the viewport). All client
functionality is retained in any of these modes, including
sensor node path histories and sidebar functions such as raw
sensor data and current pollution statistics.

3.2.6 Additional Applications
In addition to the functionality described previously, the

client provides several innovative applications for use by the
general public and the health-conscious. The framework for
these applications has been created, but their implementa-
tion depends on the pollution model reconstruction algo-
rithm which has yet to be finalized. Thus, while the follow-
ing applications are implemented, they assume the presence
of such reconstruction techniques, and are not yet functional.

The first additional application available to users in this
web-based client is a ”Green Trip Planner.” This application
provides the ability to plan driving routes between points
based on a path of least exposure to pollutants. It has been
designed to be extremely flexible, allowing users to com-
promise between pollution exposure and travel time for a
happy medium. The user is prompted to enter a starting
and ending address and the pollutants they want to avoid.
The planner uses the current pollution model to define areas
to avoid between the two locations, leaving available only
those areas with acceptable pollutant levels. It then uses
the Google Maps API ”driving directions” function to find
a path though those acceptable areas. The directions are
displayed to the user along with a track on the map. If the
user decides that the route is too long or inconvenient, they
can click at various places on the map to add locations they
explicitly want to drive through (i.e. an interstate between
two points). The planner will then amend the directions
to include the new points while retaining routes through as
many of the pollution-safe zones as possible. The user can
iterate through this process repeatedly until they are satis-
fied with the results, at which point, they will be given the
option to print the directions or save them to a file.

The second additional application is a ”Past Exposure Es-
timator”, which enables users to estimate past exposure to
pollutants given a timed GPS track as input. The estimator
application maps each of the input GPS coordinates to a

location in the pollution function for the given time. The
output will be an XML file, whose contents are defined by
the user and can contain pollution concentration information
for each coordinate, a list of times when the user experienced
pollution levels over a self-defined threshold level, or average
concentration levels over specified time ranges. Finally, our
server databases have hooks programmed into them to allow
other users and developers to access our data at a low-level
for use in their own applications and extensions.

4. RELATED WORK
Pollution awareness has increased substantially in recent

years, motivating several projects that use mobile platforms
to collect air quality measurements [7, 11, 2, 12]. One of
the primary differences between these earlier works and ours
is that the earlier mobile sensors were not networked, but
rather relied on the manual download of measurements [7,
11]. The PEIR project from UCLA uses cell phones to col-
lect air quality data. Our system places air pollution sensors
on vehicles. This decision allows us to not only use more ac-
curate sensors, but also to measure a wider spectrum of air
quality parameters such as particulate matter, without hav-
ing to worry about the resource constraints that make cell
phone based approaches impractical. Additionally, our sys-
tem is better-suited for pollution estimation since vehicles
spend their time outdoors covering a wide geographic area.
Cell phones tend to stay in a person’s pocket indoors where
pollution levels may deviate greatly from ambient levels.

Both the Common Sense project from Intel Research and
a project by a conglomeration of universities in the United
Kingdom are working on a similar platform to ours, creating
a pollution sensing network using a variety of mobile sensing
platforms including ”smart-dust,” mobile motes, static sen-
sors, and cell phones [8]. The system outlined in this doc-
ument, however, takes the approach to a higher level. We
are not only developing algorithms for the reconstruction
of air pollution information from irregular and sparse mea-
surements, but also devising methods of visualization such
as contour maps as opposed to simple discrete observations.
In addition, our system implements practical applications
which provide typical system users with valuable and acces-
sible data that promises to impact everyday life, not only
the needs of air pollution specialists or experts.

5. CONCLUSIONS
The overarching goal of this project is to dramatically in-

crease the resolution of air pollution information and max-
imize its impact on public life. We have designed mobile
nodes to sense three known air pollutants, O3, NO2, and
CO, as well as ambient environmental conditions and com-
municate this data to a central server for the purpose of
providing continuous realtime data feeds over a web inter-
face. The system provides an intuitive method of data re-
trieval using web-based visualization with a number of novel
applications making use of the high-resolution data. Users
have the ability to not only download raw sensor data from
any number of mobile sensing devices, but also to stream
pollution information in real time, visualize this data in
easy-to-understand contour-like pollution maps, and gather
statistical information about pollutants over a specified spa-
tiotemporal region. In addition to being able to do this
with current realtime data, users can also access historical

pollution information using the same interface in a manner
similar to a standard video player, allowing researchers to
perform historical analyses using our data.

The highest level of access to our pollution information
comprises two novel applications, one of which can be used
to estimate an individual’s past exposure to a pollutant us-
ing only a single timed GPS track, and another which pro-
vides a route planning service to minimize a person’s expo-
sure to a given set of pollutants. Although some aspects of
this project are still in research and development, we have
outlined a solid framework for implementing a mobile air
pollution monitoring network with concrete applications in
the real world. It is now up to the public to utilize the
resources we have provided to not only benefit their own
personal level of health, but also to increase overall aware-
ness of the societal impact of air pollution, so that together,
we can work to promote a cleaner, safer environment.

6. ACKNOWLEDGMENTS
This work was made possible by a generous grant from

Microsoft, NSF award 0807464, and the continuing financial
support of Vanderbilt University.

7. REFERENCES
[1] APE: AJAX Push Engine. Available at

http://www.ape-project.org/, 2009.

[2] Aoki, P.M. et al. Common sense: Mobile
environmental sensing platforms. In Adjunct
Proceedings, Ubicomp 2008, September 2008.

[3] Arden, D. MEMS/GPS Kalman Filter. Defense
Research and Development Canada. May 2007.

[4] Cayzac, J. The cumulative displacement filter.
Available at http://julien.cayzac.name/code/gps/,
2006.

[5] EPA. Air pollution data sources. Available at
http://www.epa.gov/air/airpolldata.html, May
2009.

[6] Ester, M. et al. A database interface for clustering. In
Proceedings of the AAAI’s KDD 1995, 1995.

[7] Ghanem, M. et al. Sensor grids for air pollution
monitoring. In Proc. of 3rd UK e-Science All Hands
Meeting, 2004.

[8] Imperial College et al. Message project: Mobile
environmental sensing system. Available at
http://bioinf.ncl.ac.uk/message/, 2008.

[9] Intl. Open Geospatial Consortium. Opengis standards.
Available at
http://www.opengeospatial.org/standards, 2009.

[10] MaxMind. Geolite city. Available at
http://www.maxmind.com/app/geolitecity, 2009.

[11] Rudman, P. et al. In Proc. of UK-UbiNet workshop on
eScience and ubicomp, 2005.

[12] UCLA CENS. Personal environmental impact report.
Available at http://peir.cens.ucla.edu/, 2009.

[13] Vaquero, L.M. et al. A break in the clouds. ACM

SIGCOMM CCR, 39(1):50–Ű55, Jan.

[14] Volgyesi, P. et al. Air quality monitoring with
sensormap. IPSN, pages 529–530, 2008.

[15] The Weather Channel, Interactive Map. Available at
http://www.weather.com/weather/map/

interactive/, 1995-2009.

